When using pd.to_datetime()
in Pandas, you might encounter the error:
ValueError: Cannot mix tz-aware with tz-naive values
This happens when:
- timezone-aware (
tz-aware
) and - timezone-naive (
tz-naive
) datetime values
exist in the same column. Pandas does not allow this combination for operations like comparison or merging.
Understanding the Problem
- Timezone-naive timestamps do not have timezone information.
- Timezone-aware timestamps include a timezone (
UTC
,America/New_York
, etc.).
Example of mixed values causing the error:
import pandas as pd
df = pd.DataFrame({"timestamp": ["2024-02-10 12:00:00", "2024-02-10 14:00:00+00:00"]})
df["timestamp"] = pd.to_datetime(df["timestamp"])
which will result into:
ValueError: unconverted data remains when parsing with format "%Y-%m-%d %H:%M:%S": "+00:00", at position 1. You might want to try:
- passing `format` if your strings have a consistent format;
- passing `format='ISO8601'` if your strings are all ISO8601 but not necessarily in exactly the same format;
- passing `format='mixed'`, and the format will be inferred for each element individually. You might want to use `dayfirst` alongside this.
How to Fix the Error
1. Make All Datetimes Timezone-Naive
If you don’t need timezones, remove them using .tz_localize(None)
:
df['timestamp'].apply(lambda x: pd.to_datetime(x).tz_localize(None))
2. Make All Datetimes Timezone-Aware
If you need timezones, localize all values explicitly:
pd.to_datetime(df['timestamp'], format='mixed', utc=True)
or
pd.to_datetime(df['timestamp'], format='ISO8601', utc=True)
Or specify a different timezone:
df["timestamp"] = pd.to_datetime(df["timestamp"]).dt.tz_localize("America/New_York")
Tips
- Use
.dt.tz_localize(None)
to remove timezones and make timestamps naive. - Use
pd.to_datetime(df["col"], utc=True)
to ensure consistency in timezone-aware timestamps. - Convert timezones before merging or comparing datetime values.