1. Overview

In this short tutorial, we are going to add gradient color visualization for dates in Pandas DataFrame.

This is helpful when you need to distinguish dates based on their values.

2. Setup

We will use simple DataFrame:

import numpy as np
import pandas as pd
from pandas.util.testing import makeTimeSeries

s = makeTimeSeries(5)

cols = ['col_1', 'col_2']
df = pd.DataFrame(abs(np.random.randn(5, 2)), columns=cols)
df['date'] = s.index

data:

col_1 col_2 date
0 0.182079 0.203433 2000-01-03
1 0.037811 0.096004 2000-01-04
2 0.479913 0.802299 2000-01-05
3 1.881718 1.605743 2000-01-06
4 0.319824 0.912157 2000-01-07

3. Steps to Add gradient to Date Column in Pandas

3.1. Add new column days since

We will start by adding a new column which will have the difference between some date or today and the dates in the column:

from datetime import datetime

df['days since'] = (df['date'] - datetime.today()).dt.days

DataFrame will looks like:

  col_1 col_2 date days since
0 0.754816 0.107682 2000-01-03 00:00:00 -8069
1 0.656553 0.042157 2000-01-04 00:00:00 -8068
2 0.953792 1.593115 2000-01-05 00:00:00 -8067
3 0.671552 1.810286 2000-01-06 00:00:00 -8066
4 0.159057 0.548218 2000-01-07 00:00:00 -8065

3.2. Add gradient color to days column as a Styler

Then we are going to use method background_gradient to add gradient color to the whole DataFrame:

style1 = df.style.background_gradient(cmap='Greens')

3.3. Create new DataFrame and reuse the style

Next we are going do the following steps:

  • copy the first DataFrame as df2
  • create new Styler
  • hide column 'date'
  • change column 'days since' to 'date' column
  • reuse the first Styler
style1 = df.style.background_gradient(cmap='Greens')

df2 = df
style2 = df2.style.hide(['date'], axis='columns')
df2['days since'] = df2['date']

style2.use(style1.export())

Dates after this step will be shown as: 2000-01-03 00:00:00З

3.4. Change date format in the Pandas style object

Finally we are going to change the date format in order to make ir more readable by adding .format({"days since": lambda t: t.strftime("%m/%d/%Y")})

The dates now will be displayed as: 01/03/2000

We can use any format thanks to strftime

4. Add gradient to Date Column in Pandas - Full code

Finally we can see the full code and the final result below:

style1 = df.style.background_gradient(cmap='Greens')

df2 = df
style2 = df2.style.hide(['date'], axis='columns')
df2['days since'] = df2['date']

style2.use(style1.export()).format({"days since": lambda t: t.strftime("%m/%d/%Y")})

result:

  col_1 col_2 days since
0 0.754816 0.107682 01/03/2000
1 0.656553 0.042157 01/04/2000
2 0.953792 1.593115 01/05/2000
3 0.671552 1.810286 01/06/2000
4 0.159057 0.548218 01/07/2000

5. Conclusion

We saw how to add gradient color for dates. We cover all the steps with detailed explanation.

We also learned how to copy styles between two DataFrames and how to change the format of dates.