In this guide, I'll show you how to count special characters in a column using Pandas. Whether you want to count special characters row-wise or in the entire column or a single column, these methods will help.
(1) Count special characters in each row
df['column_name'].str.count(r'[^a-zA-Z0-9\s]')
(2) Count total special characters in the entire column
df['column_name'].str.count(r'[^a-zA-Z0-9\s]').sum()
(3) Count occurrences of a specific special character (e.g., @
)
df['column_name'].str.count(r'@').sum()
(4) Count the chars by difference of the lengths
df['text'].str.len() - df['text'].str.replace(r'.', '').str.len()
1: Example DataFrame
Let's create a sample DataFrame with text values:
import pandas as pd
data = {
'text': ['Hello@World!', 'Python#Pandas$', 'Data&Science*', 'Special_Chars%']
}
df = pd.DataFrame(data)
Output:
text | |
---|---|
0 | Hello@World! |
1 | Python#Pandas$ |
2 | Data&Science* |
3 | Special_Chars% |
2: Count Special Characters in Each Row
To count special characters in each row, use .str.count()
with a regex pattern:
df['special_char_count'] = df['text'].str.count(r'[^a-zA-Z0-9\s]')
Output:
text | special_char_count | |
---|---|---|
0 | Hello@World! | 2 |
1 | Python#Pandas$ | 2 |
2 | Data&Science* | 2 |
3 | Special_Chars% | 1 |
3: Count Total Special Characters in Column
To count the total number of special characters across all rows:
total_special_chars = df['text'].str.count(r'[^a-zA-Z0-9\s]').sum()
Output:
8
4: Count Occurrences of a Specific Special Character (e.g., @
)
If you need to count how many times a specific character (like @
) appears in the column:
at_count = df['text'].str.count(r'@').sum()
at_count = df['text'].str.count(r'@')
Output:
1
and
0 1
1 0
2 0
3 0
5: Count Special Characters Across Multiple Columns
If you want to check special characters in multiple text columns:
cols = ['text'] # Add more columns if needed
df['special_char_count'] = df[cols].apply(lambda x: x.str.count(r'[^a-zA-Z0-9\s]')).sum(axis=1)
6: Count number of dots in column
As an alternative solution we can remove the characters from the column and get the difference from the original length:
df['text'].str.len() - df['text'].str.replace(r'.', '').str.len()
Conclusion
This guide covered multiple ways to count special characters in Pandas, including:
- Counting special characters in each row
- Summing special characters across the entire column
- Finding occurrences of specific special characters
These methods are useful for text processing, data cleaning, and validation tasks.